
THE KILLING-HOPF THEOREM

V. M. SHOLAPURKAR

Abstract. In this lecture , we discuss the celebrated Killing-Hopf the-
orem which classifies all complete and connected locally Euclidean Sur-
faces. Interestingly, it turns out that there are only four complete and
connected locally Euclidean surfaces Viz. Cylinder, Torus, Twisted
Cylinder and Kline Bottle ! The construction in the proof invloves the
notion of quotient surfaces obatined by the action of certain subgrooups
of isometry group of the Euclidean plane.

1. Introduction

The Euclidean plane is a surface of constant curvature and the curvature
is zero everywhere. One would like to have a surface which locally looks
like the euclidean plane. More precisely, one wants to find surfaces endowed
with a metric which is locally euclidean in the sense that at every point has
a neighbourhood which is locally isometric with a Euclidean neighbourhood
of a point in R2. One may think of the surface (Z = 0) ∪ (Z = 1) or the
punctured plane R2\{0}. Though these surfaces are not same as R2, locally
they are euclidean when equipped with euclidean metric. Of course these
examples are, in some sense, very trivial. In the sequel, more non-trivial
examples have been constructed by using the action of certain subgroups of
the group of isometries of the plane on the plane.

In section II, we briefly discuss the group of isometries of R2. In section
III, we shall define the notion of locally euclidean surface and also give the
constructiion of quotient surfaces which are loacally euclidean. Section IV
deals with covering surfaces by the plane, covering isometry group and the
proof of Killing-Hopf theorem.

2. The Group of Isometries of R2

The euclidean plane is the set R2 equipped with the inner product 〈X,Y 〉 =
X.Y where X.Y denotes the dot product given by x1y1 + x2y2 where X =
(x1, x2) and Y = (y1, y2). This innere product gives the standard eucliden
metric on R2. A function f : R2 → R2 is called an isometry if f preserves
the euclidean distance, that is,

d(f(P ), f(Q)) = d(P,Q), ∀P,Q ∈ R2

The following are typical examples of isometry.
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Example 2.1 : Translation by a verctor (α, β)

t(α,β) : (x, y)→ (x+ α, y + β)

Example 2.2 : Rotation about the origin O by an angle θ

rθ : (x, y)→ (x cos θ − y sin θ, x sin θ + y cos θ)

Example 2.3 : Reflection in a line L passing through origin and making
an inclination θ with positive X− axis

sθ : (x, y)→ (x cos 2θ + y sin 2θ, x sin 2θ − y cos 2θ)

We denote the set of isometries of R2 by Iso(R2). Observe that Iso(R2) is
closed under the operation of composition of functions. Further, the idntity
map is the identity element for this operation on Iso(R2). Note that in each
of the examples above, the isometry has inverse. Indeed,

t−1(α,β) = t(−α,−β), r−1θ = r−θ, s−1θ = sθ

Using the operation of composition, we can describe the rotation about an
arbitrary point (a, b) through angle θ as the product of isometries t−1(a,b)rθt(a,b).

Such an element is called the conjugation of rθ by t(a,b).

Exercise 2.4 : Express the reflection in an arbitrary line as the conjugation
of sθ.

Example 2.5 : Glide Reflection
The product of a reflection with a translation in the direction of the line of
reflection is called a glide reflection with axis L. For example, t(a,0)r0 is the
glide reflection with X−axis as the axis of reflection.

The examples of isometries described above are fundamental in nature.
Especially, reflections turn out to be building blocks for all the isometries.
We shall state some important peoperties of these isometries that allow us
to express every isometry as a product of reflections.

Theorem 2.6. (1) Any translation or rotation is the product of two
reflections

(2) The product of two reflections is a translation or rotation
(3) The set of translations and rotations is closed under the product.

Remark 2.7 : A more concise way of computing with isometries is to
express them as complex functions of one variable. We can consider a
point (x, y) ∈ R2 as z = x + iy ∈ C. Then, t(α,β) becomes the function

tα + iβ(z) = α+ iβ + z, rθ becomes rθ(z) = eiθz and s0 becomes s0(z) = z.
This simplifies products of isometries.

Exercise 2.8 : Show that any line ax + by + c = 0 is the set of points
equidistant from two suitably chosen points (x1, x2) and (y1, y2). Hence,



THE KILLING-HOPF THEOREM 3

conclude (without assuming all isometries are generated by t(α,β), rθ and sθ)
that all isometries map lines to lines.

Exercise 2.9 : Justify why the isometry r0t(1,0) is not the product of one
or two reflections.

To reach to the theorem that any isometry is the product of one, two or
three reflections, we need to observe that any isometry is determined by its
effect on a triangle.

Lemma 2.10. Any isometry f of R2 is determined by the images f(A), f(B)
and f(C) of three points A,B,C not in a line.

Corollary 2.11. If L is the line of points equidistant from the points P and
Q, then reflection in L exchanges P and Q.

Theorem 2.12. Any isometry of R2 is the product of one, two or three
reflections.

As a consequence of the theorem, we can observe that the isometries of R2

forms a group under composition, denoted by Iso(R2). Further, consider the
classes Iso+(R2) and Iso+(R2).r0 ={product of odd numbers of reflections}.
By theorem ??, part (??), we know that Iso+(R2) consists of rotations and
translations. The fixed point set of a non trivial rotation is a single point
and the fixed point set of a translation is empty, whereas the fixed point
set of a reflection is a line. Hence, Iso+(R2).r0 is not Iso+(R2), implying
that the products of even number of reflections forms a subgroup Iso+(R2)
of index 2.
It is intuitively clear that the product of an even number of reflections
preserves the sense of a clockwise oriented circle in R2, whereas the product
of an odd number of reflections reverse it.

Exercise 2.13 : Show that the translations form a group but that the
rotations do not.

By the above theorem, we know that every isometry is product of re-
flections, we distinguish the isometries into orientation preserving isome-
tries(product of even number of reflections) and oreientation reversing isome-
tries(product of odd number of reflections). Further, orientation preserving
isometries are nothing but either a rotation or translation. Now, the ques-
tion is what about orientation reversing isometries? That is, what about
the product of odd number of reflections? We can see that it is either a re-
flection of product of three reflections. Thus, we need to obtain more clear
description for an isometry which is product of three reflections. interest-
ingly it becomes product of a reflection with a translation(which is product
of two reflections) in the direction of the line of reflection, which we called as
glide reflection. (See Example ??). For example, the glide refnection when
the axis is x− axis becomes f = t(α,0)s0 for some α ∈ R or in complex form
f(z) = α+ z. Thus, we have the following theorem:
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Theorem 2.14. A product sLsMsN of reflections in lines L,M,N is a glide
reflection.

With this theorem, we now have the final remark about any isometry in
R2 as follows:
Each isometry in R2 is either a rotation, translation or glide re-
flection.

Exercise 2.15 : Deduce from the classification that each euclidean isometry
has exactly one of the following:

(1) A line of fixed points.
(2) A single fixed point.
(3) No fixed points, and a parallel family of invariant lines (an invariant

line is a line mapped onto itself by the isometry).
(4) No fixed points, and a single invariant line.

3. Locally Euclidean Surfaces

In this section, the following question will be answered: which unbounded
surfaces look locally like the euclidean plane R2? Although, R2 is intended
to model “flat” surfaces in the real world, yet all physical flat surfaces are
of finite spread and have boundaries. Such surfaces, if extended indefinitely,
will they resemble R2, even if small parts of it matches with small parts
of R2. This takes us to the idea of manifolds. In brief,, an n-dimensional
manifold is a space S in which each point has a neighbourhood “like” an
open ball in the euclidean space Rn. At one extreme, they may be merely
homeomorphic, in which case S is a topological manifold. On the other
hand, we will be considering the other extreme, where the neighbourhoods
are isometric. In this case, S is a euclidean manifold. Let us consider some
examples:

3.1. The Cylinder. A cylinder can be made by joining the edges of a strip
of paper, which is a part of a plane. Hence, cylinder is “locally like” the
plane R2. We take a strip S of R2 bounded by parallel lines, say x = 0
and x = 1 and say that points on the cylinder C are the points of S, where
points (0, y) and (1, y) are same points on C. (this “joins” the two edges of
the strip). However, this construction is inelegant because we do not have
same “situation” for all the points of C. Some points of C have two different
corresponding points on the strip. We need to modify the construction of C
so as to treat all points of the cylinder equally. For this we will be using all
points of R2 instead of just a strip.
Along with each points (x, y) in the strip, we take all points (x + n, y) to
represent the same point of C. Intuitively speaking, we form C by “rolling
up” the whole plane. (FIGURE ??)
The process can be described precisely as a construction of the quotient space
or orbit space R2/Γ, where Γ is the group of integer horizontal translations
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of R2. In fact, Γ = 〈t(1,0)〉 = {tn(1,0) : n ∈ Z}. A point of C = R2/Γ is a set

of the form {(x+ n, y) : n ∈ Z} = {tn(1,0)(x, y) : n ∈ Z}.

[xscale =1.5, yscale = 0.7] [thick, ¡-¿](3, 0) –(0, 0) – (0,2); [thick, ¡-¿](-3,0)
– (0, 0) – (0, -2); in -2,-1,0,1,2 [shift=(,0),color=black] (0pt,50pt) –

(0pt,-50pt); in -2,-1,0,1,2 (,-0.3) node[left] ;
in -1.8,-.8,0.2,1.2,2.2 (,1.6) node ∗; figure

For P = (x, y) ∈ R2, we denote this corresponding point on C by ΓP . To
visualize the orbit space R2/Γ, we focus on fundamental region. It is a part
of the plane which contain a representative of each Γ-orbit with at most one
representative of each Γ-orbit in its interior.
The distance between two points ΓP and ΓQ from C is given by

dC(ΓP,ΓQ) = min{d(P ′, Q′) : P ′ ∈ ΓP,Q′ ∈ ΓQ}

where d is the euclidean metric on R2. Observe that each P ′ ∈ ΓP has the
same set of distances to the members of ΓQ. Thus, we can also write this
as:

dC(ΓP,ΓQ) = min{d(P,Q′) : Q′ ∈ ΓQ}.

This expression shows that dC is well defined because for each P ∈ R2, there
is a nearest Q ∈ ΓQ (possibly one of a pair that are equally near). We also
note that if d(P,Q) < 1/2 we have dC(ΓP,ΓQ) = d(P,Q) since in this case,
Q is nearest to P amongst all the members of ΓQ.
The orbit map is the map which sends P ∈ R2 to its orbit ΓP ∈ C = R/Γ.
We denote it by f . From the above observation, f maps every disc D ⊂ R2

of diameter < 1/2 isometrically into R2/Γ. Hence, f is a local isometry.
Figure ?? gives an intuitive picture of the orbit map by representing an
orbit (set of stars in R2) belonging to the abstract cylinder R2/Γ by a point
(single star) belonging to a concrete cylinder in space.

fig1.jpg
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figure Γ sends all stars in R2 to a single star on the cylinder and hence Γ
“wraps the plane around the cylinder”. We say that f is a covering of C by
R2. The definition of C as R2/Γ has the advantage of giving the most direct
definition of distance on C. The local isometry property of the orbit map
f means that, within discs of diameter < 1/2, the geometry of the cylinder
is the same as the geometry of the plane. However, interesting differences
emerge when we try to extend geometric concepts to the whole cylinder.
For example, it is natural to define a line on C to be the f - image of a line
on R2. Such “lines” are “locally” the same as ordinary lines. That is, their
intersection with any disc of diameter < 1/2 is a line segment. But, they
can be globally quite different. There are three distinct types of lines on the
cylinder illustrated in the below (FIGURE ??):

fig3.jpg

figure

Exercise 3.1 : Which of the following properties of euclidean lines hold for
lines on the cylinder?

(1) There is a line through any two points.
(2) There is a unique line through any two points.
(3) Two lines meet in at most one point.
(4) There are lines which do not meet.
(5) A line has infinite length.
(6) A line gives the shortest distance between two points.
(7) A line does not cross itself.
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Exercise 3.2 : If t(α,β) is a nontrivial translation of R2, and Γ is the group

〈t(α,β)〉 generated by t(α,β) , define R2/Γ and show that it is the same as the
cylinder above, up to a change of scale.

Exercise 3.3 : Show that a disc D of diameter 2/3 is mapped one-to-
one into C by the orbit map, but that dC(ΓP,ΓQ) 6= d(P,Q) for certain
P,Q ∈ D.

An important advantage of the quotient construction is to discuss the fol-
lowing examples of euclidean surfaces, which cannot be represented properly
in three dimensional space.

3.2. The twisted cylinder. The twisted cylinder C∗ is constructed by
joining opposite sides of a parallel-sided strip S, but with a twist. The
resulting surface cannot lie in ordinary three-dimensional space without in-
tersecting itself, though a fairly representative part of it can. This part is
the Möbius band M , obtained by joining opposite sides of a rectangle R
with a half twist(Figure ??).

fig4.jpg

figure The twisted cylinder is obtained by prolonging the transverse segments
of R. We formally define twisted cylinder as a quotient R2/Γ for suitable Γ.
Let us take strip S as the fundamental region of a group Γ generated by a
glide reflection, which reflects in the x-axis and translates along the x-axis
by 1 units. That is, Γ is a group generated by t(1,0)s0. Hence, Γ = 〈t(1,0)s0〉.
[xscale =1.5, yscale = 0.7] [thick, ¡-¿](3, 0) –(0, 0) – (0,2); [thick, ¡-¿](-3,0)

– (0, 0) – (0, -2); in -2,-1,0,1,2 [shift=(,0),color=black] (0pt,50pt) –
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(0pt,-50pt); in -2,-1,0,1,2 (,-0.3) node[left] ; in -.8,1.2 (,-1.6) node ∗; in
-1.8,0.2,2.2 (,1.6) node ∗; figure

All “stars” in figure ?? becomes a single star on the twisted cylinder. More
precisely, Γ-orbit of any point (x, y) becomes {(x+ n, (−1)ny) : n ∈ Z}. We
define the points of C∗ to be the Γ-orbits of points of R2. Further, as in case
of a cylinder, we define the distance between any two points ΓP,ΓQ of C∗

as :
dC∗(ΓP,ΓQ) = min{d(P,Q′) : Q′ ∈ ΓQ}.

This makes the twisted cylinder to be locally euclidean. Infact, the discs of
diameter less than 1/2 becomes isometric.

3.3. The Torus and the Klein Bottle. The torus is usually viewed as
the doughnut-shaped surface obtained by rotating a circle in space. Such a
surface can also be obtained by opposite sides of a rectangle. However, we
can see that the distances on the rectangle are distorted by this construction.
Since, we are interested in distance preserving constructions, we once again
use the idea of quotient R2/Γ to define the torus. This will atleast carry
out the local geometry of R2. We consider the group generated by the
translations t(1,0) and t(0,1). Thus, let Γ = {tn(1,0)t

m
(0,1) : m,n ∈ Z}. The Klein

bottle is related to the torus in much the same way as twisted cylinder is
related to the cylinder. The usual construction is by joining opposite sides
of a rectangle, with one pair of sides being joined with a twist. Figure
???? shows what happens to the rectangle whose sides have been labeled
and directed so that the successive steps can be followed more easily. Like-
labeled sides have to be joined, with their arrows pointing in the same
direction. We define Klein bottle as a quotient R2/Γ as follows:
The rectangle is the fundamental region for a group Γ generated by a glide
reflection g = t(1,0)s0 in the horizontal direction and a translation t(0,1) in
the vertical direction.
As with previous surfaces R2/Γ, we have an orbit map f : R2 → R2/Γ
defined by f(P ) = ΓP and a distance function on R2/Γ which gives each
orbit P ∈ R2/Γ a neighbourhood ismoetric to a euclidean disc.
We have seen four different locally euclidean surfaces of the form R2/Γ, by
choosing proper group Γ. We now show that there are no more euclidean
surfaces R2/Γ by showing that any other group Γ yields a quotient which is
not a surface.
We call Γ discontinuous if no P ∈ R2 has a Γ− orbit with a limit point.
Further, we say Γ is fixed point free if gP 6= P for each P ∈ R2 and each
g 6= 1 in Γ.

Lemma 3.4. If Γ is a group of isometries of R2, then Γ is discontinuous
and fixed point free if and only if each P ∈ R2 has a neighborhood DP in
which each point belongs to a different Γ-orbit.

Proof. Suppose Γ is discontinuous and fixed point free, and consider any
P ∈ R2. Since Γ is discontinuous, there is a δ > 0 such that all points in
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the Γ-orbit of P are at a distance ≥ δ from P . Then, since Γ is fixed point
free, gP is at a distance ≥ δ from P for each g 6= 1 in Γ. Thus, the whole
neighborhood DP of P with radius δ/3 is shifted to a position disjoint from
DP by g, hence DP cannot contain two points in same Γ-orbit.
Conversely, suppose each P ∈ R2 has a neighborhoodDP in which each point
belongs to a different Γ-orbit. Then Γ must be discontinuous, otherwise some
P ∈ R2 would have members of the same Γ-orbit in all its neighborhoods.
Also, Γ must be fixed point free. If not, consider a fixed point Q of some
g 6= 1 in Γ. Since g 6= 1, g cannot be the identity on any neighborhood of
Q (otherwise it would fix three points not in a line and hence would be the
identity by the lemma ??). Thus, g moves points R which are arbitrarily
close to Q, and the gR are equally close to gQ = Q because g is an isometry.
In other words, any neighborhood DQ of Q includes distinct points R, gR
in the same Γ-orbit, contrary to hypothesis. �

Now, let us examine which of the isometries have no fixed points.

Isometry Fixed points
Reflection line of reflection
Rotation point of rotation

translation No fixed points
proper glide reflection No fixed points

Thus, we know that only translations and proper glide reflections have no
fixed points and hence Γ can include only these. Thus, we now have the
following theorem:

Theorem 3.5. A discontinuous, fixed point free group Γ of isometries of
R2 is generated by one or two elements.

Corollary 3.6. S = R2/Γ is a cylinder, twisted cylinder, torus or Klein
bottle.

Center for Postgraduate Studies in Mathematics, S. P. College, Pune-
411030, India

E-mail address: vmshola@gmail.com


